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Abstract. Some aspects of the contraction process SOo( l ,2 )  to Poincak are studied 
in this paper. Thc starling point is the choice of a suilable parametrization for the 
de Sitlerian phase space SOo(l,2)/SO(2) CL SU(l,l)/U(l). We show lhal the 
contraction to Paincar6 must be realized by restricting the Fo€k-Bargmann space to a 
specific subspace. This constraint is necessary to make the divergenl terms disappear. 
I n  panicular, the classical result according to which lhe discretc series reprscnlalion of 
SU( 1, 1) conlracts onlo lhe Wigner representation P( m) is described at a global level 

1. Introduction 

In the first approaches to (Galilean) kinematics, the best way of visualizing the motion 
of a body is to use spacetime diagrams. Later at a more abstract level, phase-space 
diagrams are introduced, mainly because they correspond to the set of all accessible 
(classical) states of a body. 

As soon as the student has learnt a little group theory, he is able to consider 
geometrical objects as group cosets, namely 

Spacetime = Kinematical Group/Pure motions x Rotations 

Phase space = Kinematical Group/Time x Rotations 

On the other hand the same student has learnt of the existence of sevelal possible 
kinematics or relativities [I]. This means that different kinematical Lie groups are 
possible. For instance, for two-dimensional spacetime, we can distinguish between 
seven kinematics: 

SOo(2,1)  4 Newton- 

\ 

/ 
S0,(1,2) - Newton, 

Poincare 4 Galileo - Static 

Two of them are of ‘maximal’ symmetry, i.e. their kinematical groups are the 
‘de Sitterian’ pseudo-orthogonal groups SO,( 1 , 2 )  and SOo(2, 1). The difference. 
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between them comes from the compact or non-compact nature of the time translation 
subgroup. Here, no physical unit is necessary to standardize their three (pseudo) 
angular parameters. They are the departure point for successive contractions (arrows 
on the diagram) until the ultimate ‘kinematics’ is reached where nothing moves. At 
each step, some of the parameters acquire a physical dimension. Hence, they may 
be interpreted as a length, time or momentum. Correspondingly, part of the simple 
group structure breaks down into a semi-direct product structure. 

In quantum mechanics, the spacetime representation is favoured for historical 
reasons: in Galilean quantum mechanics the probabilistic interpretation of the wave- 
function and the description of the interaction in terms of potentials depending on 
the spacetime variables are strongly related to the non-ambiguous existence of a po- 
sition operator [2]. Well known difficulties arise in Poincar6 quantum mechanics for 
interacting systems: no satisfying position operator can be defined, localizability is in 
conflict with causality, inconsistencies arise in theories for high-spin interacting sys- 
tems. They certainly become worse in de Sitter quantum mechanics. However in the 
case of SO,( 1 , Z )  with compact time, the phase-space alternative exists in a natural 
and attractive way. The phase space SO,(l,Z)/SO(2) is the simplest example of a 
classical domain and very rich analytic structures live on it [3]: Fock-Bargmann spaces 
of holomorphic functions that carry the discrete series representations of SOo(1,2). 
It is remarkable to notice that Perelomov coherent states insure a straightforward 
quantization [4, 51 and that a theory of localization for quantum systems on phase 
space may be developed, using the coherent state formalism and the related existence 
of reproducing kernels [6 ] .  

In this work we examine several features of this ‘analytic’ quantum mechanics 
on the de Sitterian phase space SOo(1 ,2) /S0(2)  Z SU(l,l)/U(l) realized as 
the open unit disk D. Actually we adopt the ‘flat-hit’ point of view by studying 
some aspects of the contraction process S0,(1,2)  + Poincare Pi(1,l). We do 
not obtain a Poincar6 phase-space quantum mechanics [7, 81 this way but rather 
momentum Wigner quantum mechanics. One interesting byproduct that results from 
this paper can be summarized as follows. 

J P Gazeau and V Hussin 

Let h ( z )  be holomorphic in D such that 

mc/llx 

F ( z , i ) =  N ( F )  (-) 1 - JZJZ h ( z )  mc 1 + 9  

is square integrable on D with respect to the measure element 

d F ( z , f )  = (1- l r 1 2 ) - 2 d z h d i .  (1.2) 

Here, m is the Poincar6 mass of the elementaly system and n is the de Sitterian 
curvature parameter. Then the function defined by 

(1.3) 

where p ,  = ( p z  + m2c2)1/2 is square integrable on IW with respect to the invariant 
measure element d p / p o .  

In our opinion the following important points should be investigatedklarified in 
the future. 
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(i) The behaviour of distributions on the Foch-Bargmann space should be stud- 
ied in order to reach, by contraction, more objects in the Gelfand triplet for 
L 2 ( k  dplpo).  

(ii) The flat limit of eigensolutions to the de Sittenan Schrodinger-like equation 
on ’D 

H F  = E F  

where F = F( z , i )  is square integrable and vanishes at the boundary ’D, and H has 
the form 

should be investigated. Lo z za, - 18, + (mc/hn) is the de Sitterian ‘time- 
translation’ generator, and V some symmetric operator-valued function of the three 
S0,(1,2) generators Lo, &,Lo,. The spectrum of Lo is {(mclhn) + n,n E W) 
if we impose some polarization condition on F.  More generally Lie algorithms 
and semiclassical methods [9, 101 could be systematically worked out to study the 
commutativity of ‘multi’ contractions on the various parameters m, c, 6,  n and e. 

The organization of the paper is as follows. In section 2, we describe three factor- 
izations of the double covering S U ( 1 , l )  of SOo(1,2) that are physically relevant for 
the description of spacetime, phase space and de Sitterian spatial infinity or phase- 
space infinity respectively. The first one is non-standard whereas the two others are 
well known in semi-simple group theory 1111. The third section combines the two 
first factorizations in order to give the phase space 2, a ‘( q ,  p)’ parametrization. The 
existence of a U (  1) ‘gauge freedom’ allows one to consider different parametrizations 
labelled by an arbitrary function A. Also we give an interesting interpretation of two 
particular parametrizations in terms of Lobatchevskian geometry. In section 4, we 
recall the Fock-Bargmann structure on ’D as being associated with quantum elemen- 
tary systems for the kinematical group SU(1,l). The problem of the contraction 
onto Poincark is approached. We insist here on the analytic aspect and give a ‘semi- 
classical’ expansion of the general element of the Fock-Bargmann space in terms 
of the curvature parameter. In section 5 ,  the contraction of the unitary irreducible 
representation (UIR) at a global level is performed by restricting it to the adapted 
subspace of functions (1.1). This allows one to check once more the classical result 
according to which the discrete series representation of SU(1,l) contracts onto the 
Wigner positive-energy UIR P ( m )  of the Poinark group. 

2. Relativistic meaning of SU(1,l) 

G = SU(1,l) is the group of 2 x 2 complex matrices g of the form 

with unit determinant detg = lalZ - IPl2 = 1. It follows that la1 2 1 for any 
SESU(1,l). 
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Three types of decomposition of G are relevant to our physical interpretation of 
SU(1,l). The first one is called the 'spacetime' factorization and is defined by the 
involution (where the superscript t denotes transposition) 

(2.2) t ij '9-9. 

Explicitly, any g of the form (2.1) can be written as 

g = j l  with II' = e, e being the identity. (2.3) 

The subgroup L of SU(1,l) determined by l t  = I - '  is isomorphic to SO(1,l): 

cosh(+/2) i s inh(+/2))  & , + E R .  ) 
-i sinh(+/2) cosh(+/2) 

where E = i e .  The element j in (2.3) is non-uniquely determined by 

cosh $e" ( s inh+  cosh$e-" 

with 0 < B < 2~ and $ E R. Namely 

B = arg(a*  + p 2 )  $ = sinh-'(aD + h p ) .  

A possible solution to (2.5) is 

j = ( eiSd2 cosh($/2) sinh($/Z)) 
(sinh($/2) cosh($/2) 

which leads to the (global but not unique) decomposition of SU(1,l) 

g = E exp(QNo) exp($N,)exp(W"l) .  

Here No,  N,, N o ,  denote the Lie algebra elements 

No = ( i /2)0,  N, = 30, No, = -$u2 

with the commutation rules 

r n, nr 1 - &T r ni nr 1 - nr 1 L ' ~ o l , ' ~ J l ~  r., = ?:o. 
L"0, < " , I  = 1'01 l ' *o , , '*o l -  " 1  

Given (2.6), + is determined in (2.8) by I = j-lge: 

p -  6tanh($ /2)e iB 
01 - Ptanh($ /2)e ie  

t anh(4 /2 )  = -i 

( e , + )  3 j defined by (2.5)-(2.7) is, in fact, a system of global coordinates for anti 
de Sitter spacetime. lb see this, let us introduce the three coordinates in R3: 

y ' = ~ - ' s i n h $  y 2 = n - ' c o s h + c o s B  y O = n  cosh $sin B (2.12) 
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is inverse length-like. Equivalently, we have 

1553 

where the ‘curvature’ 

(2.13) 

with y, = y’ f iyo. SU(1 , l )  acts on  the T(y) set and this action is induced from 
the left action of SU(1 , l )  on the set of matrices j, i.e. 

g : j --+ j ’  : g j  = j ‘ l ‘ (2.14a) 

and 

Iyy‘) = j ’ j ”  = gjj‘g‘ = gr(Y)gt .  (2.14b) 

The action is linear and determinant-preserving. Therefore the following pseudo- 
norm in &t3 is left-invariant: 

det r ( y )  = ~’( (y’ ) ’  +(yo)’ - (y’)’) = 1. (2.15) 

In particular, this sets up the isomorphism S U ( l , l ) / Z 2  3 S00(2,1). The hyper- 
boloid (2.15) is an embedding in R3 of the one-to-one anti de Sitter spacetime. We 
have seen that each point is in one-to-one correspondence with each class of the 
coset SU(l,l)/SO(l, 1). The interpretation of the transformations generated by 
No, N I  and No, is now clear. N o  generates the ‘translations in time’ corresponding 
to U(1) 3 SO(2), N, generates the ‘translations in space’ corresponding to one 
subgroup SO( 1 , l )  and No,  generates the Lorentz transformations corresponding to 
the other S O ( 1 , l ) .  That the anti d e  Sitter spacetime is locally Minkowskian is also 
clear from the left-invariant metric ds2 in global coordinates 

4‘ = K - ’ e  4 = K - ’ $  (2.1Q) 

ds’ = cosh’ n4(dq0)’  - (d4) ’ .  

given by 

(2.166) 

The second decomposition of G is well known in semi-simple group theory [U]. It 
is called the Cartan decomposition but we shall call it the ‘phase-space’ decomposition 
for obvious reasons. It is defined by the Cartan involution 

iph : - (st)-’, (2.17) 

The subgroup H = U ( l )  is determined by iph(g)  = g whereas the condition 
iph(g) = g-I selects the subset P of Hermitian matrices in G. The decomposition 
G = PH reads explicitly 

g = d z ) h ( Q )  

with 
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h(  0 )  = 0 = 2 arg Q 0 < e < 4 ~ .  (2.19) 

The bundle section Z E D  - p(  z )  E P gives the open unit disk 'D = { z  E @, lzl < 1) 
a symmetric space realization as the coset space GfH. We remark that p 2  = g g t  and 
that ( p ( z ) ) - '  = p ( - 2 ) .  S U ( 1 , l )  acts on 'D by the left action on the set of matrices 
p (  z) ,  i.e. 

g : p (  z )  -+ p (  2') defined by g p (  z )  = p (  z')h'. 

2's g .  z = (a2 + p)(& + fi)-1. 

(2.20) 

Explicitly, the action of g on z is homographic 

(2.21) 

As is well known [5, 131, 'D is a Kihlerian manifold. It is a bounded version of the 
PoincarB upper half-plane or, equivalently, the simplest example of a Lobatchemki 
space. The Kihlerian potential is given from the so-called Bergman kernel: 

I c ( z ,  i )  = c'( 1 - [ z [ ~ ) - ~ .  (2.22) 

This leads to the Riemannian metric 

l n l i ( z , i ) d z d f  
a2 

d s 2  -2- 
p h  - azaz 

= 4(1  - Iz12)-2dzdi  

and to the SU(l,l)-invariant Uhlerian 2-form 

In K ( z ,  f )  d z  A d f  w = i- a2 

azaf 

(2.23) 

(2.24) 

The third decomposition is also standard [ll]. It is the Iwasawa decomposition 

9 = h(e)Eb(+)n(z) (2.25) 

G = HAN,  with H = U ( l ) ,  A = S O ( l , l ) ,  N Z R. Explicitly, 

with 

h(0)  = (2.26) 

where 

0 = 2arg(o+  p) 
0 = 2arg(a  + p) - 2rr 

E = e for 0 < a r g ( a + p )  < rr 
E = - e  for rr < arg(a + p )  < 2rr 

b(") = (s inh($/2)  cosh(+/2) cosh(@/2) s i n h ( @ / 2 ) )  $ = 2 1 n l o + P I  (2.27) 

(2.28) 
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The map z E U ( l )  2 S1 -..+ h ( a r g r )  E H gives to the (Shilov) boundary s' 
of 'D a homogeneous space realization as the coset space G/Z,,AN 2 H/Z,. The 
semi-direct product group &AN I E, x ( A  @ N )  is isomorphic to the affine group Of 
W (easily checked from b ( Q ) n ( z ) b ( - Q )  = n(e+z)). SU(1, l )  acts on theboundaly 
S' and this action is induced from the left action on the set of matrices h ( 0 ) :  

g :  h(e)  -+ h(e')  

defined by 

g h ( 0 )  = h(0')E'b'n'. (2.29) 

Explicitly we have 

e'" = (ae" + @)(De'' + E ) - ' .  (2.30) 

We recover the action (2.21) on D extended to its boundary, or the action (2.146) 
when we extend it to the set of matrices 

F(Y) = (it ;:) det  i'(y) = Iy+I2 - (y')' = 0 (2.31) 

with eis = y'/y-. This limit point on S' is obtained from the ratio 

y'/y- = eis t anh  11 

determined from (2.12) by letting $ go to  infinity. Since we have the relation (2.16a) 
for Q, this means that either we let q go to infinity (n being lixed) or we let n go to 
infinity (q  being ked) .  In the first case S' will be seen as the anti de Sitter spatial 
infinity and in the second one as the projective null cone in R3. 

3. A configuration-momentum parametrization of the phase space 'D 

Any matrix representation (2.18) of a point z in 'D admits a spacetime factorization 
(2.3). Explicitly, we have 

(3.1) 
P 

P ( Z )  = h ( W ( + ) l ( 4 )  = j(e, $M+) = (; a )  

with 

a = ceiBI2(cosh(l l /2)cosh(4/2)  - is inh(l l /2)s inh(+/2))  
(3.2) = ~ e " / ~ ( s i n h ( + / 2 )  cosh(4/2)  + i cosh(+/2) sinh(+/2)). 

From the definition (2.18) of p ( z ) ,  we must have 6 = a real. This corresponds to 
the following constraint on 8: 

t an(0 /2)  = t anh (+ /2 ) t anh(+ /2 )  (3.34 
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.is - c o s h + + c o s h d + i s i n h + s i n h +  - 
1 + cosh +cosh 9 

Now we can explicitly write 

z = P ‘ r - l  - i s c o s h + s i n h I / J + i s i n h +  - e  
1 + cosh 6 cosh I/J 

which, with (3.3), takes the final expression 

sinh I/J + i cosh I/J sinh 4 
1 +cosh +cos11 16 ’ 

z = Z(+, S) = 

(3.36) 

(3 .44  

In order to give these expressions a more familiar meaning let us adopt a 
‘Minkowsk-brentz’ parametrization, namely (2 .16~)  together with 

sinh 9 = ( p / m c )  cosh 4 = (p , /mc)  (3.5a) 

so that 4 is given a ‘rapidity’ meaning. The vector ( p a , p )  belongs to  the forward 
mass hyperbola 

v: = {(P,,P) E Pi2 I P, > 0,p: - PZ = mZc21. (3.5b) 

First relation (3.3) imposes a specific value for p0 which satisfies 

pa + rnccosh nq f ipsinh nq 
mc + p, cosh nq 

e i w o  = 

Second we deduce the coordinate transformation as the map 

Z E D  - ( q ,  P) E R2 

defined by 

mcs inh  nq f ipcosh nq 
mc + p, cosh “ 9  Z ( ¶ , P , K )  = 

and conversely 

imc(% - z )  
p = p ( r , 2 ) =  

( 1  + 2 2 1  

(3.7) 

Note that the particular point z = 0 E D is applied on ( 9 , p )  = (0,O) E R2. 
Moreover the map is evidently onto and 

Iim z (  q ,  p ,  6) = i E S I .  (3.9) 
(Y,P)-(m.m) 
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Let us also give the transformation of the derivatives. For example, we have 

a 1 o + m c c o s h n q ) - i p s i n h n q ]  -a,-- i ~ o  ap] (3.10) [: coshnq 
a = - = - [ ( p  

m c  

where a, = a/aq and a, = a/ap.  Finally, the Uhlerian metric (2.23) and 2-fOrm 
(2.24) are given in terms of ( q ,  p) by 

ds2 = K’ dq2 + cosh2nq(dp/p0)’ (3.11) 

w =  ~ c o s h ~ q d q A ( d p / p , )  = d ( s i n h n q ) A ( d p / p o ) .  (3.12) 

The constraint (3.3) is specific of our representative choice (2.18) for the Symmet- 
ric space ’D. We could as well have chosen the section 

with a and p given by (3.2). The new constraint follows again from the reality Of 
6 = ae-iA/2. We find with the preceding ‘Minkowski-Lorentz’ parametrization 

(3.14) ei (=qo-A)  - P ,  t mccosh nq + ipsinh K q  - 
m c  + p, cosh n q  

It is then easy to show that zA only differs from z by a phase factor, i.e. 

ZA = z,(q,p, = eiA(z,Z,-) z (q ,p ,n ) .  (3.15) 

This gauge freedom allows one to select different sections in the set of triplets 
(so, q , p )  to define the (q ,p )  phase space. They are given by the expression of 
qo = q o ( q , p )  following from relation (3.14). 

It is interesting to make a comment about the effect of such a parametrization. 
The metric (2.23) is transformed into 

ds: ~ 4 ( 1  - I rAl2)-’dzAdfA 
= 4 ( 1 - l z 1 2 ) - 2 ( d z d f + l z 1 2 d X 2 + i ( r d f - f d z ) d X )  (3.1Q) 

while the 2-form (2.24) becomes 

mi = [ I  + i(z8, - f 8 i ) A ] u .  (3.166) 

We first remark that this last expression is invariant with respect to the phase- 
space transformation 

A - t x( l4) .  (3.17) 

Second there exists a specific function A = A, for which mi is canonical. Indeed if 
we take 

1 i( z2 - 2’) 
A, = t a n - ’  (3.18) 
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we find 

or in ( q ,  p) coordinates 

The corresponding metric (3.160) may be written as 

2 
2 - 2 Po 2 dP2 ds: E ds,  - 7 dq + y. m c  Po 

(3.20) 

(3.21) 

It is remarkable to notice that this choice corresponds to  taking qo = 0 in (3.14). 
The definition of a time ( n o )  in terms of space ( q )  and momentum (p)  in such 

a way that w becomes the familiar canonical 2-form w1 = (3.20) is reminiscent 
of what we usually do  in Galilean classical mechanics [14]. It is shown elsewhere 
that (nq,p/mc)  has really a position-velocity meaning at the time qo = 0 for 
a test particle of mass m in anti de Sitter spacetime [SI. Otherwise (nq,p/mc)  
coordinatizes the set of classical free motions. The corresponding parametrization for 
the phase space D reads 

p, sinh nq + ip 
p ,  cosh nq + mc zi(4,P,Kc) = (3.21) 

We now come to the geometrical interpretation of the parametrization (3.4) and 
the constraint (section choice) (3.3). Our understanding takes place within the Lo- 
batchevskian geometry framework For instance, the coordinate curves corresponding 
to (3.4) are, at 4 constant, circular arcs (the so-called constant-rapidity Lobatcheskian 
l ies )  

1 

s inhZ+  
Iz - i co th  $1' = - IZI b 1 (3.22) 

orthogonal to the unit circle S'. On the other hand, they are, at $ constant, the 
circular arcs (the so-called constant-position Lobatcheskian lines) 

(3.23) 

that join the two poles z = ki. The two curves are evidently orthogonal at z = 
z ( 4 , $ ) .  Note that the points at infinity for the constant-rapidity Lobatcheskian lines 
are given by 

+ i t anh  4. 1 
cosh + 2*- = *- (3.24) 

The meaning of the angle 0 in equation (3.3) is now clear. The de Sitterian rotation 
angle B defining the Cartan decomposition (3.1) is also the polar angle of the tangent 
to the constant-rapidity Lobatcheskian lines at z = z ( $ ,  11). 
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The geometrical construction of the coordinate curves corresponding to the 
'Galilean' parametrization z1 = (3.21) is clear from the relationships 

z1 =e-"+(+ ,+)  = iz(+,+).  (3.25) 

There is a permutation of the constant-rapidity l i e s  and constant-position lines to- 
gether with an axis permutation. The constant-rapidity lines are now circular arcs 
joining the points t = fl and tangent to the constant-position lines for z ,  and vice 
versa. 

Note that in the Lobatcheskian terminology [15] the constant-position lines for z 
are hypercycles equidistant to the vertical Lobatcheskian line defined by Rer  = 0 and 
IzI < 1. The Lobatcheskian motions (2.21), when restricted to the Lorentz subgroup 
(2.4), translate points along a given hypercycle while leaving fixed the 'absolute' points 
z = ki. 

All these comments are illustrated in figure 1. 

Figure 1. Anti de Sitlcrian phase spacc and Lobachevskian gmmelry of lhe dbk, 
Cwrdinale CUN~S companding Io L = (3.4) are, a1 .# constant, the circular ares (3.22) 
orthogonal lo SI. They are. at .# constanl. the circular arcs (3.23) lhat join the WO 

pola T = f i .  The Galilean parametrization ZI = m m p o n d s  10 a permutation 
of Ihe previous circular arcs together with an ( z y )  pcrmutation. 
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4. Fock-Bargmann strnctures for SU(1,l) 

Geometric quantization of the classical phase space ’U leads to a Hilbert space stmc- 
ture which is appropriated to anti de Sitter quantum mechanics. The open unit disk 
D Z S U ( l , l ) / U ( l )  can be viewed as an orbit for the coadjoint representation of 
SU(1 , l ) .  This picture allows one to build up the UIR of S U ( 1 , l )  which can be 
associated with elementary quantum systems for anti de Sitter relativity in agreement 
with Wigner’s formulation of symmetry in quantum mechanics. All these mathemat- 
ical procedures together with the physical interpretation is described elsewhere [8]. 
We just recall here the main results which are necessary to our purpose. 

We denote FE. = { f( z )  : z E D} the Fock-Bargmann space [5] of funtions holo- 
morphic inside the unit circle, satisfying the squawintegrability condition (f ,  f) < 03 

with respect to the scalar product 

J P Gazeau and V Hussin 

with w given by (2.24) and E, > i a tixed real number. The representation operator 
T E o ( g )  of S U ( 1 , l )  is defined by 

( T E “ g ) f ) ( z )  = (0. t a ) - ? E O f ( g f  ’ 2). ( 4 4  

T E o  is unitary, irreducible and belongs to the discrete series for Eo > i [ll, 121 
(actually we should restrict to integers or half-integers larger than or equal to 1 in 
order to stick to the srricru-senso definition of discrete series for SU( 1,l) r SL(2 ,  R), 
but the distinction has no importance if we deal with the Lie algebra S U ( 1 , l )  or 
with the universal covering of S U ( 1 ,  l), as was noticed by Barut and Fronsdal [12]). 

Since our final aim is a better understanding of some aspects of the contraction 
process S U ( 1 , l )  + ’P:(l,l), as the curvature n goes to zero and Eo goes to 
the infinity, it is apparent that the form (4.1) or equivalently the space FEo is not 
well adapted to such a limit procedure. Therefore we introduce a keighted’ Fock- 
Bargmann space 

F$ = { F ( z , r ) = ( l - l * I ? ) E ” ( z ) ,  f E + )  (4.3) 

which is the Hilbert space of square-integrable non-analytic functions inside the unit 
disk with the scalar product 

and with the ‘polarization’ constraint issued from the analyticity of f :  

(a, + E , z ( l -  l z I 2 ) - 1 ) F ( z , T )  = 0 .  (4.5) 

The representation operator T g ( g )  on F$ is deduced from Tf(g) defined by 
(4.2). 
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The corresponding action of the Lie algebra s u ( 1 , l )  is obtained as usual by 
differentiation of (4.6). From the decomposition (2.8) of g E SU(1, l ) ,  we easily get 

(4.7a) 

(4.76) 

N o , - L , , = - ~ ( ( 1 + t ~ ) ~ , - ( 1 + f 2 ) ~ ~ + E a ( f + z ) )  (4.7C) 

N ,  - L ,  = Za, - fai + E, 

N l - - + L 1 = ~ ( ( 1 - ~ 2 ) ~ , + ( 1 - ~ * ) ~ i + E o ( f - t ) )  1 

with the commutation rules 

[La, L1] = iLal [ L o , ,  Lo] = iL,  [L , , ,  L,]  = iL,. (4.8) 

Let us mention that these operators (4.7) &mute with the polarization operator in 
(4.5j. 

If we adopt another choice of parametrization for the domain 'D, or more precisely 
the one resultin from the gauge transformation (3.15), the corresponding definition 
of the space F g A  will be given by 

F& = { F A ( Z A , f A )  = ( 1  - ItAl~)E"e'E""fZA), f E 9 0 ) .  (4.9) 

The polarization condition (4.5) and the group actions (4.6) and (4.7) have to 
be modified as a consequence. However in the sequel we shall stick to the original 
'purely Cartan' definition (4.3), with appropriate comments about the more general 
situation (see section 5) .  

The last step before the contraction procedure is to translate this abstract ma- 
chinery where no operational physical quantity appears into the familiar language 
where physical dimensions are present Besides the (three) fundamental constants n, 
m and c already injected into the formalism, the quantum context now introduces 
action-dimensional physical quantitites at the order of fi. The unique dimensionless 
combination of these four constants is the parameter 

K K  ( = -  
m c  

(4.10) 

which is typical of a de Sitter quantum mechanics. The pure number E,, which is 
actually the minimal weight of the representation T$, is a meromorphic function of 
( with a simple pole at = 0, i.e. 

(4.11) 

where e,, e,, . . . , are pure numbers (maybe equal to zero). Let US also introduce 
the dimensionless quantities 

(4.12) 

so that it is easy to show that the parametrization of 'D in terms of t = (3.7) now 
reads 

2 1 / 2  u = m c q / K  v = p l m c  v o = ( l + v )  

s inh  (U + ivcosh ( U  

1 + 'U, cosh ( U  
2 = z ( u , v , ( )  = (4.1%) 
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and we have 
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1 - lz(' = 2 ( 1 +  U,, cosh [U)-'. (4.136) 

Actually we have to say more on the behaviour of an arbitrary state F( z, f) E 
F$ in terms of E. Let us rename this function in order to  take into account its 
dependence on [, U and v: 

F =  F ( z ( u , v , ~ ) , r ( u , v , [ ) , [ )  = exp{Eo(Oln ( l  - I z l ' ) I f ( z ( u , v , t ) , ~ )  

(4.14~) 

where a possible explicit dependence on [ has also been introduced in f E FE0. 
Using (4.13b), it reads 

(4.14b) 

Because of the form of (4.146) it is convenient to introduce the logarithms of this 
function, i.e. to define 

G ( z ( u , v , F ) , Z ( u , v , t ) )  = l n F ( z , f , O  
= - &([)In $(I + U, cosh E % )  + g(z(u ,  U,€)) (4.15) 

where 

g ( z ( u , v , F ) , [ ) ~ l n f ( z ) .  (4.16) 

Now the polarization constraint on G issued from (4.5) reads 

azG = - E o z ( l  - l z l y .  (4.17) 

Introducing the new quantities (4.12) in the derivation operator (3.13) we easily find 

(4.18) 
iv, 

(v ,+cosh [u+ ivs inh [u )  [-'a,+ -a,). cosh [U 
a = - = A  a 
z - a r  2 

Thus equation (4.17) becomes 

( v , + c o s h < u + i v s i n h [ u )  [-'a,+- iv, a") G 
cosh [U 

+ E,([)(sinh[u+ iucosh[u)  = 0. (4.19) 

Due to expression (4.11) for E,([) ,  the term E, In f (  1 + U, cosh [U) in G E (4.15) 
has a simple pole at [ = 0. Thus let us expand g (4.16) accordingly to finally write 

(4.20) 
m 

G = -E,([)In f ( l +  v,cosh[u)+F-' ~ [ " g , - l ( u , v ) .  
n=O 
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From equation (4.19) satisfied by G G (4.20) follows an infinite sequence of correlated 
partial differential equations for the unknown functions g,-,(u, U). Because our aim 
is finally to take the h i t  for t -t 0, it is sufficient to give the first terms of the 
expansion. They are explicitly computed in appendix A. 

(4.14) by taking the exponential Of 
G. We obtain 

."(E,u,v) =exp-([- 'r"_,(u,uj+ ~ o ( ~ , u ) + ~ ~ ~ ~ u , v j + u ~ ~ - ~ ~  

We then conclude on the behaviour of F 

i c > 2  c m  I - i r k \ \  

(4.21) 

(4.22) 

(4.226) 

F-,(u,v) = In $(I + vo)  - rp-,(v) 

Fo(u,v) = iuvorp'-l(u) + eo ln  $(I+ v o )  - rpo(v) 

+ iuu,,vh(v) + e, In $( 1 + v o )  - v l ( v )  (4.22~) 

where 'p-l,qo and v1 are arbitrary functions of v obtained in solving g-l, go and 

Such an analysis shows clearly that the asymptotic behaviour is ruled by the singular 
term exp - t - l F - l ( ~ , v ) .  It will disappear if P 1 ( u , u )  = 0 i.e. if we have 

91 (d appec&E Aj acC q,, d' aii fint semcG beik<2$$;.es .+kh resp@.; ;= D. 

vp- l (v)  = In $(I+ v o ) ) .  (4.23) 

This particular case will be extensively discussed in the following section. The Gaus- 
sian which is present in (4.22) at the order E of (4.21) (let us recall that from (4.12) 
U is associated with the position q )  is characteristic of the free de Sitterian states 
where an 'universal' harmonic oscillator strength is present [l]. 

5. Contraction of a Fock-Bargmann structure 

It is well known [7] that the representation TEo(g)  or T$(g) of SU(1,l)  E 

SOo(2,1) x Z2 must contract to the Wigner positiveenergy representation P(m) 
of PS(1 , l )  as n (or c) goes to zero and Eo goes to infinity while keeping the 
product KE, equal to m c / h  (this justifies the first term in the expansion (4.10) of 

Let us see how it works explicitly on the space 32. In order to eliminate the 
singular terms in the expansion (4.21) of F ( t ,  2) .  we must impose some constraints 
on the form of F E (4.3) and more particularly of the original analytic function f ( r ) .  
Indeed it is easy to show that the function (1 + zZ)-l  analytic in D has a limit 

Eo(0 ). 

Then to cancel F-, 3 (4.22n) we must factorize f(+) as 
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where the function h is now analytic in both z E Z, and F 2 0. N ( c )  is a normal- 
ization factor possibly non-analytic in c. In the following normalization will not be 
imposed in order to ignore this non-analytic N ( c ) .  The square-integrability condition 
now reads 

J P Gazeuu and V Hussin 

Note that the weight regular factor is such that 

(5.4) 

We accordingly restrict our considerations by working on the subspace of 32 
which consists of functions of the form 

where h ( z )  h ( z , O ) .  Note that this choice fixes the arbitrary functions ( o - ~ ( u ) ,  
po(v) ,  and q1(v) in (4.22) (cf appendix A for details). The expansion (4.21) then 
reads 

where 

The 2-vectors p and 9. are given by 

(5.10) 

and 

4. . P = QOPO - qp. (5.11) 

We recognize in (5.10) the flat spacetime limit of section 3.3 which defines, in the 
space of parameters (0 ,  $, 4) for S U (  1 ,  l ) ,  the Cartan phase space for this group. 
The remarkable properties of the de Sitterian section (5.10) for Poinark are listed 
elsewhere [7]. 

Let us state the crucial result about the limit of the square-integrability condition: 
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Proposilion. Let h ( r )  be a holomorphic function in the unit disk D such that the 
integral 

(5.12a) 

is finite for all Eo 2 1. Then the function on R defined by (5.9) is square integrable 
on E4 with respect to the Lorentz invariant d p l p , .  

Proof. (See [16] for more detailed results.) Let us first notice that (5.12) can be 
written 

bo = a l(l - l~12)2E"lf(~)12w 
with f as in (5.2) (A'([) = 1). By putting Eo = 1, this hypothesjs implies 

I ,  = ~ J f ( z ) ~ 2 d R e z d l m r  <m. 

It follows from the holomorphy of f :  f ( r )  = a#.  Indeed, 

(5.126) 

The last inequality results from the monotonic convergence theorem. On t he  other 
hand the function @ ( p )  from (5.9) will be square integrable if the following is true: 

After putting z = p / ( p o  + mc) and replacing h by f, this integral becomes 
1 

J = 2 1  ( l - z 2 ) l f ( i z ) 1 2 d z  <CO. 

Holomorphy allows one to expand in series under the integral and to use uniform 
convergence: 

(5.1%) 
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Now it is easy to show that 
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It follows from (5.12b), (5.13~) and (5.13b) that J is finite. 0 

Let us now show how the representation T$(g) of S U ( 1 , l )  on F E (5.6) 

The first step is to write g E S U ( 1 , l )  in the form 
contracts. 

where 6 is here given by 

6 =  t anh- ’ (k lk , )  k E V L .  (5.15) 

Note that a and p are then explicitly given by (3.2) where 0 = na, and @ = ICR. It 
is well known from the Inonii-Wigner contraction procedure [17] that, when n -+ 0,  
the set ( a o , a , k )  turns out to be the set of parameters characterizing the Poincare 
group 

(see [7] for details). 
The second step is to express the dependence on ( (or n) of (4.6) where F 

has the form (5.6). This will be done by replacing z by (4.13n) and a,@ by their 
expression in terms of a,, a and 6 according to (5.14). The last step is to expand 
(4.6) in ( and to take the limit when t i 0. NI the details concerning these two 
sreps are given in appendix E. 

Let us give the final result expressed in terms of the phase-space variables. We 
introduce the transformed variables ( q ’ ,  p ’ )  related to (U’, U‘) given in appendix B 
(formulae (B.5) and (86)). 

d = 4 -  ( allmc La%) mc 

and 

( 5 . 1 7 ~ )  

(5.17b) 
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where V has been already defined in (5.11) and 

(5.1%) 

and 

Such a result requires some comments. First let us recall from [7l that the left 
coset space SU(l,l)/U(l) characterized by z E 2) has been contracted to the left 
coset space Pi(l,l)/T, where T is the subgroup of time translations with the section 
[7] U :  Pi(l,l)/T - Pi(1,l) 

(5.20) 

Moreover the action of SU( 1,l) on z ,  i.e. z - 9'. z has been shown (in appendix B) 
to contract to the action of P:( 1,l) on ( q ,  p) explicitly given by (5.17a) and (5.176). 
In fact such a transformation law is directly obtained from the action of Pi( 1,l) on 
the space PJ(l,l)/T given by 

( 6 , ~ ' )  = ( A ~ ' ( a o . a ) , A ~ ' ) ( q , ~ ) .  (5.21) 

Next, the representation (5.18) gives the action of Pi(1,l) on the function 
@ ( q , p ) .  We can easily deduce the corresponding action on @ ( p )  from its relation 
(5.11) to U ( q , p ) .  It turns out to be, as expected, the momentum version of the 
Wigner representation P( m ) ,  i.e. 

(u,,,(ao, a , k ) @ ) ( p )  = exp(i(a . P ) / ~ ) @ ( P ' ) .  (5.22) 

Finally, the representation of the Poinark algebra is obtained as usual by giving 
the infinitesimal generators Po, P, and I< [7]. If we consider the representation on 
the functions @ ( q , p )  given by (5.18), we get 

(5.23b) 

(5.2k) 

where all the derivatives are taken at e 
these generators satisfy the commutation relations 

(O,O, U) the identity of the group. Clearly, 

[Po,P]=O [P,,li]=-iP [P, K ]  = -iPo. (5.24) 
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As we go from representation (5.18) to (5.22), we immediately go from (5.23) to the 
well-known momentum Wigner representation on @(p) ,  i.e. 

J P Gazeau and V Hussin 

Finall , had we chosen the more general parametrization (3.15) of ’D defining the 
space Fw:A € 7 -  = (4.9), all the previous results would be modified in the following sense. 
The ‘regular’ functions (5.5) are now defined by 

F A ( Z A , Z A > t )  = e l E o ( O V z 7 , C )  F ( ~ ~ ,  f,, E )  

In terms of the phase-space variables ( q ,  p)  we have 

where X =  X ( z ( u , u , € ) , Z ( z l , v , € ) , ~ )  issuch that 

limX = 0 
( -0  ,-Q 

lim a,X = a,Xlo. (5.28) 

with 

(5.30) 

Note that (5.30) corresponds to the flat spacetime limit of section (3.14). As a final 
comment it is easy to see that the ‘Galilean’ choice X = XI = (3.18) can be written 

p s i n h n q  
p, + mccosh  nq 

so that 

(5 .31~~)  

(5.31b) 

and this leads to the expected choice of section qs ,A l  = ( O , q ) ,  
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Appendix A 

The solution to equation (4.17) takes the form (4.20). By expanding (4.17) in E as 
( tends to zero, we will be able to determine the unknown functions gn-l(u,v) .  
Indeed the function 

m 
(Al j  r, .-, - .-I P C n  

d i ( U , V , 5 J , C l = 5  L S  S,-ii",vj 
n=O 

clearly satisfies the homogeneous equation (corresponding to (4.17) 

Inserting (Al) into (M), we get (for < + 0) 

Assume that it is true for all E .  we get an infinite sequence of partial differential 
equations, i.e. 

a , g - , ( ~ , ~ )  = o ( A b )  

and 

Equation ( A h )  corresponds to the coefficient which is independent of E while 
equation (A4b) corresponds to the coefficient of < J .  Equation (A&) is solved directly 
as 

g - , ( u , v )  = i o - l ( V ) .  ('w 
The following functions, g r ( u , u ) ,  1 2 0, are obtained by recursively solving equa- 
tion (A4b) and using (AS). For example, go is the solution of 

. .  
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so that the solution is 

gl(u,u) = ~ ( u v ' - ~ ( u )  + (1 + uz)vp'Ll(,u)) - i u v d ( u )  + vpl(v). 

The other functions may be determined in the same way but we are not interested in 
them here, The expansion of g 3 (Al) then leads to 
g(z( t ,u ,v ) , t )  = ~ ' v - ~ ( u )  + (%(U) - iuwd- i (u) )  

J P Gazeau and V Hussin 

(A7) 
- U 2  

For the particular choice (5.2) of f which would delete the singularity in (, we get 
g (Al) of the form 

Expanding the two members of (A10) in E we have 
&(€,u,Vj ,E)  = -Eo(E) J n ( 1  + 2 ' )  + ln 4 2 ) .  W O )  

m 

e , l n $ ( ~ f u o ) - -  1 + U0 (iuaeo- ) Z = i " / ( l + " o )  + (( 
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Appendix B 

Let us show how the representation T $ ( g )  of SU(1, l )  contracts. It is given by 
(4.6) with F = (5.6). Here again it is more convenient to introduce the logarithmic 
function 

G~(z,E) = In(T,$(g)F)(z,z). (BO 

The dependence on E is introduced through L = (4.13a) and the expression of a 
and p as given from (5.14), i.e. (n  = (mc/li)c) 

2 2 
na 4 cosh - - i sinh 

2 

na 4 .  na p = + p o l 2  (sinh cosh - + icosh - sinh 
2 2 

Let us notice that from I = (4.13a) we find 

Moreover the expression of z' = (2.21) in terms of ( may be given by using (B2) and 
(4 .13~)  but we will omit this here. Instead we will write 

i v' U' 
lim z' = - l i m a  z' = - 
(-0 1 + U; (-0 t 1+vb  

where the transformed quantities U ' ,  v; and U' are respectively given by 

k k ko k 
mc mc m c  

- - 21' = A V  - --Uo 0 - mc.O - -U 

and 
m c  
h 

ut = U + - ( -a ,v + a v o ) .  

This is the transformation law of (U,.) under P J ( 1 , l ) .  
(Bl) by using (4.6) and (5.6): Let us now write Gg 

Gg(z,E) = E o I n  (;;; - x> + G ( z ' , 5 ' ) .  

C( z ' ,  5') has exactly the expansion (A13) but at the transformed point (U', U ' ) ,  i.e. 

The expansion in of the other term of (B7) must be computed. 

k >  1.  (88) 

In fact, we have 

(B9) 
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while 
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i u ( k + m c ( v - v ' ) )  i ( a o ( k o + m c v o ) - a ( k + m c v ) )  
h(1 + 4) (-0 l ima,  (W) P X + 6  = - mc(1 + vo) ( l  + U;) + 

This last expression can be simplified by using the relation 

We finally obtain 

- 2iuk imc ao(ko + mcvo) - a ( k  + mcv)  +-  - -  
(1  + vo)(ko + mc)  - v k  h mc + kovo - kv 

and 

Combining (B8) and (B13) we get the expansion in F of Gg E (B7), i.e. 

and 

> ,  , % mca ,dkQ + mcv,) - a ( k  + mcv)  < , ( v ; a O , a , e )  = - - 
h mc + kovo - kv 

Back to the original F and the representation T$ we find 

(Bi6j 
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